Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
Tags
- 풍백
- 태그를 입력해 주세요.
- 한서
- R
- 패수
- 고구려
- Histogram
- 기자조선
- 후한서
- 기자
- 단군
- categorical variable
- ANOVA
- 통계
- 우분투
- 낙랑군
- 통계학
- 지리지
- 선형회귀분석
- linear regression
- 한서지리지
- 신라
- spss
- repeated measures ANOVA
- post hoc test
- 히스토그램
- 유주
- 독사방여기요
- 창평
- t test
Archives
- Today
- Total
獨斷論
R, lm(y~x) 실행후 사용할수 있는 유용한 함수 본문
There are a number of extractor functions (functions that extract or derive specific information from a model) available including:
residuals() | Extracts the residuals from the model |
rstandard() | Extracts the standardized residuals from the model |
rstudent() | Extracts the studentized residuals from the model |
fitted() | Extracts the predicted (expected) response values (on the link scale) at the observed levels of the linear predictor |
predict() | Extracts the predicted (expected) response values (on either the link, response or terms (linear predictor) scale) as well as standard errors or confidence intervals. |
coef() | Extracts the model coefficients |
confint() | Calculate confidence intervals for the model coefficients |
summary() | Summarizes the important output and characteristics of the model |
anova() | Computes an analysis of variance (variance partitioning) from the model |
plot() | Generates a series of diagnostic plots from the model |
influence.measures() | Calculates a range of regression diagnostics including leverage and Cook's D |
effect() | effects package - estimates the marginal (partial) effects of a factor (useful for plotting) |
avPlot() | car package - generates partial regression plots |
AIC() | Extracts the Akaike's Information Criterion |
Comments